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Outline 

• Overview of hybrid DA methods  
• NCMRWF hybrid 4DVAR system 

We describe the hybrid ensemble/4D-Var global data assimilation system that is 
operationally running at NCMRWF.  
The scheme uses the extended control variable technique to implement a hybrid 
background error covariance that combines the standard climatological covariance 
with a covariance derived from the 23-member operational ensemble NEPS.  



Instead of running just a single forecast, the computer model is run a 
number of times from slightly different starting conditions. The 
complete set of forecasts is referred to as the ensemble, and 
individual forecasts within it as ensemble members. 

Ensemble forecast systems are designed so that each member should be 
equally likely. The initial differences between the ensemble members are 
small, and consistent with uncertainties in the observations. But when we look 
several days ahead the forecasts can be quite different. 

Ensemble forecast? 
An ensemble samples the 
uncertainty of the forecast, 
assuming that the forecast model is 
perfect. 



Schematic of the essential components 
of an ensemble of forecasts: The 
analysis (denoted by a cross) 
constitutes the initial condition for the 
control forecast (dotted); two initial 
perturbations (dots around the 
analysis), chosen in this case to be 
equal and opposite; the perturbed 
forecasts (full line); the ensemble 
average (long dashes); and the 
verifying analysis or truth (dashed). 
The first schematic is a “good 
ensemble” in which the truth is a 
plausible member of the ensemble. 
The second is an example of a bad 
ensemble, quite different from the 
truth, pointing to the presence of 
deficiencies in the forecasting system 
(in the analysis, in the ensemble 
perturbations and/or in the model). 

https://www2.atmos.umd.edu/~ekalnay/pubs/ECMWFPredictKalnay5.pdf 



Variational data assimilation (VAR) is the method of choice in many numerical 
weather prediction centres to estimate the state of the atmosphere for 

weather prediction 

Can assimilate efficiently 
Direct observations of meteorological fields from in situ instruments on sondes, 
aircraft and in weather stations, 
Indirect observations from satellites and from ground-based radar 

Despite this wealth of observational information 
available, VAR needs a priori (or background) state. 

Importance of background state: 
It provides information otherwise missing from observations, and provides a realistic 
reference state needed to form the nonlinear observation operators used to assimilate 
many of the indirect observations. 

As with all information, the background state is 
also prone to error, and VAR must account for this. 

Data assimilation methods 



4DVAR:Assimilation of 
observation within 6 
hour window 



How 'large' is an operational DA system? 
 

• x has typically n ∼ 106-107 elements (∴ the B-matrix has 1012-1014 matrix elements!). 
• y has typically p ∼ 105 _ 106 observations.  

Note that this is an order of magnitude smaller than the number of unknowns in x 
(hence the need to include the a-priori term ). 

Typical numbers of 
observations made by 
instruments (green) and 
assimilated in the 
NCMRWF global data 
assimilation system 
(magenta). 



Data assimilation methods: Background error 

covariance matrices uses: 
weight the previous forecast, which contains information about past observations, 
and recent observations. 

Covariance matrices describe: 
• how the uncertainties in different quantities are correlated, allowing us to give greater 

weight to more-accurate data and also to spread observational information between 
different atmospheric variables.  

 
For example, a temperature observation can also be used to adjust our estimate of the wind. 
Operational forecast models require too many pieces of information  to explicitly account for 
all the inter-relationships. Instead, 4DVar models the correlations using physics principles in 
the form of an unchanging covariance matrix. 

This is most conveniently achieved through the so-called background error covariance 
statistics, which are represented by the matrix B. 

Bannister, 2008 

The cost, J , is minimized with respect to the increment δx. At the minimum, δx describes the 
analysis, xa, specified with respect to a reference (or ‘guess’) state, xg, i.e. xa = xg + δx. 

Similarly δxb is the incremental description of the background, xb = xg + δxb (often the reference 
state is the background state and so δxb = 0) 



Covariance Matrix 
A covariance matrix (also known as auto-covariance matrix or variance–covariance matrix) 
is a square matrix giving the covariance between each pair of elements of a given 
random vector. 

A useful tool for separating the structured relationships in a matrix of random 
variables. 

In a scalar system, the background error covariance is simply the variance, or the 
average squared departure from the mean, where 

  B = (𝑒𝑏−𝑒𝑏)2 
In multi-dimensional system 

B = (𝑒𝑏−𝑒𝑏)(𝑒𝑏−𝑒𝑏)𝑇 
Which is a square, symmetric matrix with variance along the diagonal. E.g. for a very 
simple three dimensional system: 

The off-diagonal terms are cross-
covariances between each pair of 
“variables” in the model, the term 
variable here corresponds to the value 
of each physical dependent variable at 
each grid point. 

The no of variables, and the dimension of the matrix, is the product of the no of 
physical variables and no of grid points. 



Basic structure of the B-matrix for a system with four 
variables: zonal wind (u), meridional wind (v), pressure (p) and 
potential temperature (θ ). Each variable is a discrete three-dimensional 
field whose values at each position are represented as a vector and 
whose covariances are represented as a submatrix in the above. 
Submatrices that are the autocovariances of a single field between 
pairs of positions in space are the shaded block diagonal matrices, and 
submatrices that are the cross covariances between different variables 
and between pairs of positions in space (multivariate covariances) are 
unshaded. 



Mathematical properties of the B-matrix 

The observation error covariance matrix (right) shown 
against the observation vector (left). Often observation 
errors are taken to be uncorrelated with each other and 
so is diagonal. The diagonal matrix elements are the 
respective observation variances (equal to the square of 
the standard deviations) and the off-diagonal elements 
are zero. There are observations. 

The background error covariance 
matrix for a forecast given in the state 
space. Each square is itself a matrix 
here. Sub-matrices along the diagonal 
(deep yellow) are called 'self 
covariances' and off-diagonal 
sub-matrices are called 'multivariate 
covariances 



Panel a: True covariance matrix. Panel b: Sample covariance matrix. Panel c: Gaspari-Cohn 
correlation matrix used for covariance localization. Panel d: Regularized covariance matrix 
obtained from a Schur product. 



Schur (Hadamard) product of two vectors is very similar to matrix 
addition, elements corresponding to same row and columns of 
given vectors/matrices are multiplied together to form a new 
vector/matrix. 
It is named after French Mathematician, Jacques Hadamard. 





Hybrid 4DVar 

A drawback of 4DVar is that the forecast covariance matrix does not take account of the 
day-to-day weather characteristics. For example, we would expect correlations to be 
stretched along a weather front. One way to include this flow-dependence is to 
use ensemble forecasting to represent the forecast uncertainty. We randomly perturb the 
previous forecast several times to produce a set of possible initial atmospheric states, 
each of which is evolved in time using the forecast model. The ensemble is then used to 
construct a flow-dependent covariance matrix. In practice, the ensemble size is limited by 
our supercomputing capacity so a hybrid approach is used that blends the unchanging 
covariance matrix of traditional 4DVar with the ensemble covariance matrix. Hybrid 4DVar 
is used operationally for global forecasting at the Met Office. 

https://www.metoffice.gov.uk/research/weather/ensemble-forecasting


Sketch of the interactions between EPS (upper box) and high-resolution deterministic NWP 
(lower box) systems. UM=Unified model, OPS=Observation Preprocessing System, 

ETKF=Ensemble Transform Kalman Filter. The red arrow denotes the coupling supplying 
ensemble perturbations as estimates of flow-dependent forecast error to the data 

assimilation, and 4D-Var analysis to which ETKF-updated ensemble perturbations are added 
for the next cycle of ensemble forecasts.  

EPS 



Salient Features of  NCUM  Assimilation–Forecast System 

Model Atmospheric Data 
Assimilation 

Surface Analysis 

Model: Unified Model; Version 10.8  

Domain: Global 

Resolution: 12 km, Levels 70  

No. of Grids: 2048x1536   

Time Step: 5 minutes  

Physical Parameterizations: based 
on GA6.1 (Walters et al, Geosci. 
Model Dev., 10: 1487-1520, 2017)  

Dynamical Core: ENDGame 

Forecast  length: 10 days  (based on 
00 UTC and 12 UTC initial 
conditions) 

Resolution: N320L70 (~40 km) with 
N144L70 Hessian based pre-
conditioning  

Method: Hybrid incremental 4D-Var. 
Information on “errors of the day” is 
provided by NEPS forecast at every 
data assimilation cycle 

Data Assimilation Cycles: 4 analyses 
per day at 00, 06, 12 and 18 UTC. 
Observations within  +/- 3 hrs from 
the cycle time is assimilated in 
respective DA cycle  

Observations: 

Observation Processing System does 
the quality control of observations. 
Variational bias correction is applied 
to satellite radiance observations.  

Soil Moisture Analysis: 

Method: Extended Kalman Filter 

Analysis time: 00, 06, 12 and 18 
UTC  

Observations assimilated: ASCAT 
soil wetness observations, Screen  
level Temperature and Humidity 
(pseudo observations from 3D-Var 
screen analysis) 

Sea Surface Temperature: 
Updated at 12 UTC DA cycle with 
OSTIA based SST and sea-ice 
analysis 

Snow Analysis: Satellite-derived 
snow analysis. Updated at 12 UTC 
DA cycle 

Global NCUM System (12 km resolution)  

Flow chart of NCUM system  (in Mihir  HPCS) 





Observation Type Observation Description 
Assimilated 

Variables 

Surface Surface observations over Land and Ocean, TC bogus (Surface Pressure) 

Wind, Temp, 

Humidity, Surface 

Pressure 

Sonde Radiosonde (TAC & BUFR), Pilot balloons, Wind profiles &Radar VAD winds 
Wind, Temp, 

Humidity 

Aircraft Upper-air wind and temperature from aircraft (AMDAR & AIREP) Wind, Temp 

GroundGPS Ground based GPS observations  Zenith Total Delay  

Satellite:GPSRO 
Global Positioning System Radio Occultation observations from various 

satellites (Terra-Sar X, COSMIC, FY3D, KOMPSAT, MetOp (A, B & C)) 
Bending Angle 

Satellite:Satwind 
Atmospheric Motion Vectors from geostationary and polar orbiting 

satellites (MSG, JMA, GOES,MetOp,INSAT-3D & INSAT-3DR, MODIS, NOAA) 
Wind 

Satellite:Scatwind Advanced Scatterometer in MetOp-A & B, ScatSat-1, WindSat Wind 

Satellite:MicroWave 

Sounder/Imager 

Microwave sounders / imagers ATMS, AMSU, GMI, MWHS, AMSR2, SAPHIR, 

SSMIS 

Brightness 

Temperature  

Satellite:Hyperspectral IR Hyperspectral infrared sounders IASI,CrIS,AIRS 
Brightness 

Temperature 

Satellite: Geostationary 

Sounder/Imager 
Sounder/Imagers from MSG,GOES,Himawari,INSAT 

Brightness 

Temperature 

Satellite:HLOS Wind 
Mie-scattering and Rayleigh-scattering Horizontal Line-Of-Sight (HLOS) 

winds from AEOLUS satellite 
HLOS wind 

Satellite:Aerosol Optical 

Depth (AOD) 
Dust aerosol optical depth from MODIS (Terra & Aqua) satellite  AOD 
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Thank you for patience listening 

Summary 

• There is a natural linkage between data assimilation and ensemble forecasting:  

 ensemble forecasts can estimate the flow-dependent uncertainty of the forecast;  

• Data assimilation techniques require accurate estimates of forecast uncertainty in 

order to optimally blend the prior forecast(s) with new observations. 

• Thus these two endeavors are united and this union certainly improve the quality of 

both initial conditions and subsequent forecasts.  

Hybrid (variational/ensemble) data assimilation approaches attempt 
to combine the best of both variational and ensemble frameworks.  


